
40 The Delphi Magazine Issue 70

Beating The System: API-Level
Programming With Kylix
We’re not in Kansas any more...
by Dave Jewell

This month’s Beating The
System represents something

of a milestone (at least, for me!)
since it’s the first article that I’ve
written entirely from within Linux.
I don’t want to be accused of bang-
ing the Kylix drum too much, and
Windows developers will be
pleased to know that normal ser-
vice will be resumed next month!

Nevertheless, the primary aim of
this month’s article is to ‘widen
your vision’ in terms of what Kylix
can do for you. I want to demon-
strate that Kylix will do a lot more
than simply create CLX-based
applications and that it’s equally
well suited to writing efficient,
easily deployable command-line
utilities, barefoot X applications,
or whatever. There’s a whole new
universe of APIs to explore here,
so get stuck in!

An Architectural Review
At this point, a brief review of the
Kylix architecture is in order. As
you’ll no doubt appreciate, the
familiar VCL application frame-
work is specific to Delphi. When
using Kylix, the VCL classes are
replaced by the equivalent CLX
classes and controls, which are
also available in Delphi 6. CLX is a
relatively thin layer whose main
job is to try and provide as much
VCL compatibility as possible; the
real work is done by the Qt class
library upon which CLX sits (if you
want to know more, turn back
some pages and read Brian Long’s
in-depth article on CLX and Qt).

What this means is that a Kylix
application is arguably running
with two application frameworks
stacked one on top of another: CLX
on Qt. Most of the time, this isn’t a
problem, but once you start using
Kylix in anger, you’ll certainly dis-
cover a few rough edges which

show up as a result of some dis-
agreement between the two class
libraries.

For example, if you drop two
panels and a vertical splitter con-
trol onto a form, set up the various
Align properties such that the
splitter is sandwiched neatly
between the two panels and allows
their relative widths to be resized,
everything will work fine when you
run the application. But if you now
add a menu bar to the form
window, you will find that things go
unpleasantly pear-shaped when-
ever the splitter is resized. Rather
than putting the vertical sizing
outline where it should, the outline
is displaced upwards by an amount
equal to the height of the menu bar.
Thus, it leaves sizing ‘trails’ all over
the menu bar, which don’t disap-
pear until the form is redrawn. This
is not a show-stopping bug, but it’s
untidy and a good illustration of
what can happen when frame-
works collide.

It’s important to bear in mind
that Qt is a very powerful applica-
tion framework in its own right,
forming the architectural founda-
tion of the excellent KDE desktop.
If you want to see more Qt source
code than you can swing a cat at,
go to www.kde.org/anoncvs.html,
follow the instructions there, and
download the latest KDE develop-
ment snapshot via anonymous
CVS. As the website warns you,
you’ll definitely be on the ‘bleeding
edge’ if you try to compile and
install any of this stuff, but if you
want to play with the upcoming
KDE 2.2, get some kudos by fixing a
few bugs and, most importantly,

➤ Figure 1: If you want to do
serious work with libc,
download a copy of the
library documentation from
the various places it can be
found on the internet. This
particular version is in the
form of a single HTML file.

June 2001 The Delphi Magazine 41

gain a thorough understanding of
Qt, this is the place to come!

If you’re feeling adventurous you
might even want to launch out into
the unknown by programming Qt
directly from Kylix. For an in-depth
discussion of how the Qt class
library is ‘flattened’ under Kylix,
and why it’s an absolute pain to try
and communicate with Qt directly
(at least from Kylix), again see the
excellent article by Brian Long.

Here, however, we’re going to
dig somewhat deeper. Qt sits on
top of the X system, and also makes
use of other, lower-level, code
which I’ll refer to collectively as the
Linux API. At the very lowest level,
you’ve got the kernel itself. The
kernel doesn’t ‘export’ callable
routines in the usual sense, but like
the MSDOS kernel of fond memory
(or even the NT kernel for that
matter), you communicate with it
using interrupts. The plain-vanilla
MSDOS service interrupt was INT
$21. Under Linux, the interrupt
number used to communicate with
the kernel is $80. I suppose that
there’s nothing to stop you writing
a chunk of inline assembler code to
set up the necessary registers and
issue a kernel call, but doing so
would be messy, error prone, and
not portable. For those rare cases
when you must issue a kernel call,
take a look at the syscall routine in
the LIBC.PAS file.

Introducing libc AKA glibc
You’ll notice that syscall is imple-
mented inside the libc.so.6 shared
library, and it’s actually the libc
routines which we’re going to
focus on for a while here. They
form perhaps the lowest level of
the Linux API which is easily acces-
sible to Kylix developers. Although
originally written for the benefit of
C developers, we can call these
routines directly from Kylix,
thanks to the sterling efforts of
Borland R&D who have
‘Pascalised’ the necessary func-
tion declarations (the aforemen-
tioned LIBC.PAS file runs to around
24,500 lines of code!).

But I’m getting ahead of myself.
Firstly, it’s important to under-
stand exactly what libc is and how
it developed. Back in the early days

of C programming, the C runtime
library was statically linked to an
application, and this was as true
under UNIX systems as it was
under DOS. Microsoft introduced
the concept of DLLs for Windows
while Linux now has shared librar-
ies, which amount to pretty much
the same thing. This made it possi-
ble to use a standard libc file
which was shared by all interested
applications, greatly reducing the
memory requirements when
several programs are running
(because there’s only one copy of
the library in memory) and also
making the size of executable files
much smaller.

Strictly speaking, what I’m
referring to here as libc is actually
glibc2, or version 2.0 of what
started out as the GNU libc library.
You can find more details on the
development history at www.gnu.
org/software/libc/. libc encapsu-
lates much of the de facto Linux
API, including support for threads,
processes, sockets, and all the
usual stuff you’d expect in a
runtime library. The foregoing is
necessarily something of an over-
simplification, and in fact version
2.x of glibc is actually imple-
mented as multiple shared librar-
ies. To see what is inside the
library, visit www.gnu.org/
manual/glibc-2.0.6/libc.html where
you can download library docu-
mentation in various formats.

Let’s begin with something
simple. One of the questions most
frequently asked by Linux newbies
is ‘Does Linux support DLLs?’ Once
that’s been answered, they then
want to know what has happened
to LoadLibrary, GetProc- Address,
and FreeLibrary, the Windows API
routines concerned with DLL
access. Not surprisingly, these rou-
tines don’t exist under Linux.
Instead, they’re replaced by a trio
of libc routines that perform the
same job: see Listing 1.

These function declarations are
taken from the LIBC.PAS file. Don’t
be misled by the references to
‘shared object handles’ in the

accompanying file comments. In
Linux-speak, a ‘shared object’ in
this context is simply a shared
library or DLL while a shared
object handle is merely a reference
to the library: a module instance in
Win32 terminology.

As you’d expect, the dlopen rou-
tine takes the name of a shared
library and returns a pointer, the
so-called shared object handle. If
the return value is Nil, then the
requested library wasn’t found.
Bear in mind that, under Linux, the
algorithm used to search for
shared libraries is completely dif-
ferent to the way in which Load-
Libraryworks under Windows, the
most important thing being the
environment variable LD_LIBRARY_
PATH, which defines a list of directo-
ries where the search is per-
formed. The Flag parameter to
dlopen can take a number of values,
the most useful of which are:
➢ RTLD_LAZY. This defers the reso-

lution of undefined symbols (ie
external symbols needed by
the incoming dynamic library)
until the library code executes.

➢ RTLD_NOW. This forces undefined
symbols to be resolved before
the call to dlopen returns.

Either of these two flags can be
combined (using OR) with another
flag, RTLD_GLOBAL, which causes
any external symbols exported by
the library to become available to
other dynamic libraries which are
opened via dlopen, thus explaining
the real reason behind the first two
flags. I won’t go into more detail
here, but if you’re getting the
impression that shared libraries
under Linux are potentially more
sophisticated than what is avail-
able under Windows, you would be
right!

dlclose is obviously used to
close the shared library whereas
dlsym is the Linux equivalent of
GetProcAddress. It takes a handle to
the loaded library together with the
name of the required function,
returning the routine address.

function dlopen (Filename: PChar; Flag: Integer): Pointer; cdecl;
function dlsym (Handle: Pointer; Symbol: PChar): Pointer; cdecl;
function dlclose (Handle: Pointer): Integer; cdecl;

➤ Listing 1

42 The Delphi Magazine Issue 70

As an example of how to use
these routines, take a look at the
code in Listing 2 which I’ve copied
from SYSUTILS.PAS. This routine,
CreateGUID, is in the business of
generating a GUID. Under
Windows, this call is simply
mapped onto the routine of the
same name in OLE32.DLL, which is
obviously not an option under
Linux. Instead, this code makes use
of a shared library, libuuid.so.1.
Unfortunately, it’s not absolutely
guaranteed that this library is
present on every Linux
distribution, and therefore the
code uses dlopen, etc, to program-
matically load the library and call
the uuid_generate_time routine
contained therein. If you’re won-
dering why the library never gets
closed, libuuidHandle is a global
variable which gets passed to
dlclose in the finalization clause of
SYSUTILS.

If you don’t need fine control
over those dlopen flags, you can
make use of a set of handy wrap-
pers provided by Borland. Peek
inside SYSUTILS.PAS and you will
find LoadLibrary, FreeLibrary,
GetProcAddress and even GetMod-
uleHandle, all provided courtesy of
some wrapper code inside the
aforementioned DLL. If you’re
trying to write portable code,
you’d be advised to stick with
these routines unless your require-
ments are more specialised. Of
course, if you’re trying to create
the smallest possible executable,
then you can always pull these
routines out of SYSUTILSaltogether.

Fun With Processes
For those coming from a Windows
background, some of the most

interesting routines in libc are
those that relate to process cre-
ation and management. Probably
the simplest method of running
another process is to make use of
the system routine which is
defined like this:

function system(Command:
PChar): Integer; cdecl;

Since the identifier ‘system’ has a
unique meaning as far as Object
Pascal is concerned, the compiler
won’t appreciate you using this
routine unless you qualify the
identifier name, like this:

Libc.system(‘gimp’);

In this example, the code fires up
the Gimp image manipulation
program, always assuming, of
course, that you’ve got it installed.
In order to do this, a search is made
through the list of directories
specified in the PATH environment
variable, looking for an executable
with a matching name.

The system call actually works
by making use of the default shell.
In other words, whatever you spec-
ify as an argument to this call, you
can think of it as being ‘typed’ at
the command line. Here’s another
example which illustrates the
point:

Libc.system(
‘ls -l /usr/local/’+
‘kylix/lib/*.dcu >frodo’);

In this example, we use the list
command to create a verbose
directory listing of all the DCU files
located in Kylix’s ‘lib’ directory. Of
course, this assumes that you’ve
installed Kylix into the same place
as I have! You’ll also notice that

this example uses shell redirection
to redirect the results to a text file
called frodo. If you were nervous
about using the directory lookup
routines contained in libc, you
could use this sort of technique to
create a text file containing the
required info, and then parse the
resulting file afterwards using your
own code [Oooh, that’s a blast from
the past: I remember doing just this
in good old DOS! Ed].

This technique is actually a
great deal more useful that you
might think, especially once you
realise just what riches are con-
tained inside the /proc directory!
As seasoned Linux users will know,
the /proc directory actually con-
tains a set of what might be called
‘pseudo-files’. They’re not really
‘there’ in the sense of physical disk
files. Rather, they correspond to a
set of in-memory buffers which
provide all sorts of interesting
information about the system.
This is directly analogous to the
way in which Windows NT main-
tains a number of dynamic keys
inside the system registry which
correspond to certain on-the-fly
aspects of the operating system’s
behaviour.

To see this in action, try using
the system command like this:

Libc.system(
‘cat /proc/cpuinfo > ~/cpu’);

This will create a text file called
cpu in your home directory. Open
this text file, and you’ll discover
the model name of your CPU, the
stepping number, precise CPU
speed and a hundred and one
other anorakish things! The point
here is that this sort of thing is triv-
ially easy to discover under Linux,
but could take page after page of
obscure Win32 code.

Some of the entries under /proc
are themselves directories. The
screenshot in Figure 2 shows the
results of peeking inside the
/proc/bus/usb/devices file which
lists all the connected USB
devices. No, I don’t understand
half of the information presented
here, and I realise that USB sup-
port under Linux is still in its
infancy, but nevertheless you can

var
libuuidHandle: Pointer;
uuid_generate_time: procedure (out Guid: TGUID) cdecl;

function CreateGUID(out Guid: TGUID): HResult;
const
E_NOTIMPL = HRESULT($80004001);

begin
Result := E_NOTIMPL;
if libuuidHandle = nil then begin
libuuidHandle := dlopen ('libuuid.so.1', RTLD_LAZY);
if libuuidHandle = nil then Exit;
uuid_generate_time := dlsym (libuuidHandle, 'uuid_generate_time');
if @uuid_generate_time = nil then Exit;

end;
uuid_generate_time (Guid);
Result := 0;

end;

➤ Listing 2

44 The Delphi Magazine Issue 70

see from this that I’ve got an
Iomega ZIP CD plugged into a USB
port. Again, how much effort would
it take to figure that out under
Windows?

There’s one problem with the
system command, which is that it
effectively ‘blocks’ while the other
process is executing. Taking our
original example of running Gimp:
your Kylix application will be
frozen until Gimp is closed. Is there
a way round this? With Linux,
there’s usually a way round any-
thing! Once again, those familiar
with the UNIX command line will
know that if you append an amper-
sand character (&) to the end of the
line, you’ll get a ‘fork’. Without the
fork, the parent process is blocked
until the child process dies, but
with a fork, they can both continue
executing together. Think of it as a
fork in the road: afterwards, you’ve
got two roads instead of one! If you
try appending an ampersand to the
Gimp example given earlier, you’ll
see that the original application no
longer waits for Gimp to terminate.

UNIX programmers traditionally
refer to this sort of scenario as a
‘fork’ because of a libc library

routine of the same name. When-
ever you start off with a single
process and end up with two, this
routine is generally involved some-
where. Listing 3 has a little example
program for you.

If you were to execute this pro-
gram, not knowing what fork actu-
ally does, you might reasonably
expect to see either New Process or
Old Processprinted on the console.
In fact, you’ll see both messages!
Immediately before the call to fork,
only one instance of your program
is running. Immediately after the
call to fork, there are two! It’s cru-
cially important to understand that
the second, new, process doesn’t
start executing back at the begin-
ning of the program code. Rather, a
carbon copy of the process is cre-
ated in memory, and it starts exe-
cuting from the point immediately
after the call to fork. Because the
new process inherits a copy of all
the global variables from the
parent process, everything is set
up the way it should be.

So how do we know which is the
child and which is the parent? This
should be obvious from the Listing
3 code. The return value of forkwill
be zero for the newly created pro-
cess, and it will be non-zero when
fork returns to the original pro-
cess. If the return value is -1, this
indicates an error: it wasn’t possi-
ble to create the child process. Any
other non-zero value is taken as
being a pid or process identifier.
Process identifiers are very impor-
tant in Linux and you can use them
to obtain information on other

processes, wait for a specific pro-
cess to terminate, kill another
process (if you have the necessary
privileges) and so on.

If you look back at the /proc
directory, you’ll see that there are
a number of ‘pseudo-directories’
here, each of which has a number
rather than a name. Here again,
Linux makes it dead easy to enu-
merate all the running processes
on a machine, because each of
those numbered directories corre-
sponds to a current process. Thus,
if you’ve got a process with a pid of
37, you’ll find that there’s a
pseudo-directory (this is probably
not the right terminology, but you
know what I mean) under the /proc
directory with the name ‘37’.
Within each of these directories,
there are various other entries
which enable you to determine the
amount of memory used by the
process, the command line that
was used to start the process, and
so forth. You can even enumerate
the file handles currently in use by
the process (hint: look in the fd
subdirectory). Of course, Linux
won’t allow you to examine or
fiddle with the attributes of a pro-
cess which you don’t own. In order
to get the full picture you’ll have to
be running as root. Nevertheless,
this technique of mapping the
operating system state onto
pseudo file system entries is a very
powerful mechanism, and one is
left wishing that life were as simple
for Windows developers!

The Joy Of X
I’m not sure that I’d recommend
that you go down this route unless
you’re a serious anorak, but Kylix
will actually enable you to pro-
gram the X Window system
directly. Up until now, we’ve been
talking about libc, which is
encapsulated in the LIBC.PAS file.
However, Borland also provides

program xapp;
uses Libc;
begin
if fork = 0 then
Writeln('New Process')

else
Writeln('Old Process');

end.

➤ Listing 3

➤ Figure 2: The /proc directory
gives access to a host of system
and process information.
Don't make the mistake of
thinking that this is an
inefficient way of obtaining
such info; many of the runtime
library routines are simply
wrappers around code that
accesses the /proc directory!

June 2001 The Delphi Magazine 45

another hefty header file in the
shape of XLIB.PAS. Actually, this is
nowhere near as enormous as libc,
weighing in at a mere 7,000 lines of
code.

As you’ll be aware, a Kylix appli-
cation needs a special shared
library, LIBQTINTFSO, which acts as
the glue connecting the Qt class
library to a Kylix application. What
if we were to dispense with Qt com-
pletely? Immediately we do this,
we get a big reduction in the
number of ancillary files that we
need to deploy along with our
application. For your amusement,
here’s how to create the smallest
possible executable using Kylix:
first, select New from the File menu
and then choose a Console applica-
tion. Of course, we don’t actually
want a console application, so
you’ll need to delete the line:

{$APPTYPE CONSOLE}

from the generated source code. If
you now compile this do-nothing
application, you’ll get a tiny exe-
cutable (oops, I nearly said EXE
file!) that’s only 14Kb to 15Kb in
size. And remember, folks, that’s
without using packages. If you
rebuild this application with pack-
ages, your executable will shrink to
around 5Kb in size. However, this
has the effect of introducing a
dependency on BPLBASECLX,
although I’m not sure why. Since
hard disks are so cheap these days,
there’s not much point in introduc-
ing non-standard dependencies
(BPLBASECLX isn’t part of any stan-
dard Linux distro, at least, not yet)
for the sake of 10Kb, so I’d advise

you to stick with a
non-packaged appli-
cation.

And just in case:
please don’t berate
me for using upper-
case letters when
referring to these file-
names: I appreciate
that under Linux file-
names are case-
sensitive, but it just
helps me to make
things stand out in
this simple-minded Linux text
editor I’ve been using here!

Ok, this might be the smallest
possible Kylix executable, but it’s
not a windowed executable, is it?
How can we add a bare-bones
window to this program while
keeping the code tiny? Once you
add the Xlib unit to your uses
clause, you are all ready to start
experimenting with X! Take a look
at Listing 4, which shows you how
to do it.

I shamelessly adapted this
source code from a C-based X tuto-
rial which I found on the internet at
http://tronche.com/gui/x. The pro-
gram begins by specifying Xlib and
Libc in the uses clause. Libc is only
required because we make use of
one routine from this unit, __sleep,
about which more later.

The first job of the program code
is to call XOpenDisplay which opens
a connection to the X server. As
you might know, X is based around
a client-server model. No, it’s noth-
ing to do with databases, I’m
delighted to say!

The basic idea is that the display
device could potentially be a dumb
terminal which is some distance
away from the server, with some-
thing like a TCP/IP connection
between them. Most of the time, of
course, you’ll be working with an X
server which is sat on the same
machine as the client software, but
we will shortly see how this
client-server architecture is evi-
dent in the Xlib API. When you use
the Xlib routines, you are effec-
tively calling code in a large shared
library which (at least on my
machine) is called libX11.so.6.2.
The main job of this library is
to convert client requests into

something called the X Protocol,
passing these requests on to the
server itself.

In keeping with this client-server
approach, the one and only param-
eter to XOpenDisplay is a string,
which specifies the host machine
to which the display is attached
and the server and screen number
on that machine. Fortunately, we
don’t have to get bogged down
with all that stuff. For our pur-
poses, we can just pass Nil, which
causes Xlib to use a string value
obtained from the DISPLAY environ-
ment variable. This will typically
have the value :0.0 which simply
means, this machine, first display
server, first screen!

Having got a reference to the X
display, the program next calls
XCreateWindow to create an actual
window. I won’t discuss the pur-
pose of all these parameters (you
can read up on it by working
through the freely downloadable X
reference material) but briefly, the
first parameter to this routine rep-
resents the connection to the X
server which we’ve just estab-
lished. The second parameter
allows us to specify a parent
window for the window being cre-
ated. Because we’re creating a
top-level application window, we

program xapp;
uses
Xlib, Libc;

procedure Main;
var
dpy: PDisplay;
w: TWindow;

begin
dpy := XOpenDisplay(Nil);
w := XCreateWindow(dpy,
XDefaultRootWindow (dpy), 0, 0,
200, 100, 0, CopyFromParent,
CopyFromParent, Nil, 0, Nil);

XMapWindow(dpy, w);
XFlush(dpy);
__sleep (10);

end;
begin
Main;

end.

➤ Listing 4

➤ Figure 3: Here's our little
do-nothing X application
doing, err, nothing. The
essential point, though,
is that Kylix makes it possible
to create applications which
are tiny, easily deployable,
and require no special runtime
support other than the
standard shared libraries
that ship with any distro.

46 The Delphi Magazine Issue 70

can get by with a call to
XDefaultRootWindow, which gives us
the root window for the default
screen. Presumably, this corre-
sponds to the desktop under
Linux, but don’t quote me! The next
four parameters specify the X, Y,
width and height positions of the
window. Where the window actu-
ally appears is to some extent a
function of the installed window
manager, and won’t necessarily
correspond to the X, Y values that
you supply here.

At this point, we’ve got a
window, but it isn’t visible yet. To
make it visible, we need to call
XMapWindow which causes the
window to appear on the actual
display. Well, almost. If you were to
remove the call to XFlush, you’d
never see the window. I mentioned
above that X uses a client-server
model, and in the interests of effi-
ciency, the client code (Xlib) buff-
ers up a number of calls to the
server before sending them
together. XFlush causes this output
buffer to be flushed, yielding an
immediate response from the
server. In the normal course of
events (pun strictly intentional!) a
‘proper’ X application would sit in
a message loop, processing events
as they occur, and the X routines
used here guarantee that XFlush is
called as needed. However, this
little application cheats by dis-
pensing with an event loop, and
that’s why the call to XFlush is
required.

And, of course, this is also the
reason we need to call __sleep.
Since there is no message handling
in this minimalist application, the
window would normally appear
and disappear in the blink of an
eye, but the __sleep call ensures
that it sticks around for ten
seconds.

Experienced libc developers
should note that this is actually the
standard libc sleep function,
renamed by Borland so as not to
clash with the Sleep routine in
SYSUTILS.PAS. Personally, I don’t
see why they had to rename it:
after all, Object Pascal gives us the
ability to disambiguate identical
names in different units by prefix-
ing the identifier with the name of

the unit. I think
that Libc.sleep
would have been
clearer, but then
again I’m biased:
to me, one or
more under-
scores before an
identifier name
is ugly.

The result of
all this can be
seen in Figure 3.
You are proba-
bly wondering
where that nice
textured back-
ground came
from, and how
come there’s a
Kylix icon sitting
in the window?
The reason, of
course, is that
the application doesn’t attempt to
render any sort of window content,
and for that reason, whatever
background was behind the
window at the time it was created
is what gets mapped into the
window.

Conclusions
Xlib has a reputation for being a
difficult-to-program, cumbersome
API, and although there are some
weak areas, I’d say it’s not much
more difficult to program than the
barefoot Windows API. In any
event, I hope that this article will
inspire you to delve deeper into
both X and the powerful libc
library. And if you’re feeling suffi-
ciently inspired to rewrite Qt in
Object Pascal, then I’d love to hear
from you!

In the last couple of weeks, I’ve
seen some people comment that
Kylix isn’t yet sufficiently mature
for desktop application program-
ming (lack of third-party support,
slow IDE, bugs in CLX, etc) and
that it’s more suited for server
development right now. Whether
or not such criticisms are valid,
I think they miss the essential point
that Kylix gives us a native-code,
high performance compiler with
which to explore the world of Linux
and do it using the programming
language we all know and love.

Next Time
Next month, we’ll be back in
Windows land with a vengeance
when I’ll be taking a look under the
hood of Windows XP, (alias
Whistler) and examining some of
the new goodies contained therein
from a developer’s perspective.
See you then.

Dave is a freelance consultant,
programmer and technical jour-
nalist specialising in system-level
Windows programming and
cross-platform issues. He is the
Technical Editor of The Delphi
Magazine. You can contact Dave
at TechEditor@itecuk.com

➤ Figure 4: Check out the
http://community.borland.com
site where you'll find an
article entitled 'Programming
Kylix with the CLXDisplay API'.
Once again, this is an excellent
eye-opener piece in terms of
what Kylix can do.

	An Architectural Review
	Introducing libc AKA glibc
	Fun With Processes
	The Joy Of X
	Conclusions
	Next Time

